Reg.No.:

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 7010

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – MAY / JUNE 2024 Fifth Semester

Electronics and Communication Engineering UI9EC518 – CONTROL SYSTEMS

(Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$		
Q.No.	Questions	Marks	KL	CO
1.	What is feed back? What type of feed back is preferred for control system?	2	K1	CO1
2.	Write short notes on the state space representation of continuous	2	K1	CO1
3.	time systems. How did the type number of a system is identified? Mention its significance.	2	K1	CO2
4.	Highlight the significance of test signals.	2	K2	CO2
5.	Mention the correlation between time and frequency response.	2	K3	CO3
6.	Write the expression for resonant peak, resonant frequency, Gain margin and Phase margin.	2	K1	CO3
7	Write the necessary and sufficient condition for stability.	2	K2	CO4
8.	Give any two limitations of Routh stability criterion.	2	K1	CO4
9.	State the duality between controllability and observability.	2	K2	CO5
10.	What is sample and hold circuit?	2	K1	CO5

PART-B

 $(5 \times 13 = 65 \text{ Marks})$ Q.No. Questions Marks KL CO Write the differential equations governing the mechanical system. 13 **K3** CO₁ 11. Also determine the transfer function. M₂ (OR) b) Find the overall gain C(s)/R(s) for the signal flow graph shown 13 K3 CO₁ below. 12. Derive the expression for unit step response of under damped and 13 **K**1 CO₂ a) critically damped second order system. (OR) b) A unity feedback control system has a loop transfer function 13 **K3** CO₂ G(s) = 10/s(s+2). Find the rise time, percentage overshoot, peak time and settling time for a step input of 12 units. Enumerate the procedure for obtaining the magnitude response and CO₃ 13. 13 K1 a) phase response from a bode plot. (OR) The open loop transfer function of a unity feedback system is given 13 CO₃ by $G(s) = (1=0.2s)(1=0.025s)/s^3(1+0.005s)(1+0.001s)$. Sketch the polar plot and determine the phase margin. 14. Construct Routh array and determine the stability of the system 13 **K**3 CO₄ a) represented by the characteristic equation $s^5+s^4+2s^3+2s^2+3s+5=0$. Comment on the location of the roots of characteristic equation. (OR) Discuss briefly about the steps to be followed to construct a root b) 13 **K1** CO₄ locus plot of a given transfer function. **K**1 CO₅ 15. 13 a) Construct a state model for the system characterized by the differential equation $(d^3y/dt^3) + 6(d^2y/dt^2) + 11(dy/dt) + 6y + u = 0$. Give the block diagram representation of the derived state space

model.

(OR)

b) The state model of a discrete time system is given by X(k+1) =AX(k) +BU(k)
 Y(k)=C X(k)+D U(k)
 Determine its transfer function.

13 K3 CO5

PART-C

 $(1 \times 15 = 15 \text{Marks})$

Q.No.

Questions

Marks KL CO 15 K3 CO5

16. a) Sketch the Nyquist plot for a system with the open loop transfer function G(s)H(s)=K(1+0.5s)(1=s)/(1+10s)(s-1). Determine the range of values of K for which the system is stable.

(OR)

b) Convert the block diagram to signal flow graph and determine the 15 K3 CO2 transfer function using Mason's gain formula.

